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Abstract Metabolomics as a research field and a set of techniques is to study the entire small
molecules in biological samples. Metabolomics is emerging as a powerful tool generally for pre-
cision medicine. Particularly, integration of microbiome and metabolome has revealed the
mechanism and functionality of microbiome in human health and disease. However, metabo-
lomics data are very complicated. Preprocessing/pretreating and normalizing procedures on
metabolomics data are usually required before statistical analysis. In this review article, we
comprehensively review various methods that are used to preprocess and pretreat metabolo-
mics data, including MS-based data and NMR -based data preprocessing, dealing with zero and/
or missing values and detecting outliers, data normalization, data centering and scaling, data
transformation. We discuss the advantages and limitations of each method. The choice for a
suitable preprocessing method is determined by the biological hypothesis, the characteristics
of the data set, and the selected statistical data analysis method. We then provide the
perspective of their applications in the microbiome and metabolome research.
ª 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co.,
Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
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Introduction

Metabolomics can be defined as a research field and a set of
techniques to study the entire set of small molecules in a
biological sample. Currently, metabolomic technologies go
well beyond the scope of standard clinical chemistry
techniques and are playing an important role in precision
medicine due to its capability of precise analysis of hun-
dreds to thousands of metabolites. In microbiome research,
there is a trend to integrate the microbiome and metab-
olome to discover mechanism and functionality of micro-
biome in healthy status and disease development.
However, statistical analysis of metabolomics data is very
challenging, not only because the metabolomics as a
research field is very complicated, but also due to the
complexity of metabolomics data. Before the statistical
analysis, metabolomics data are usually required to be
pretreated and normalized.

Metabolites as chemical entities can be analyzed using
standard chemical analysis tools, such as mass spectrom-
etry (MS) and nuclear magnetic resonance (NMR) spectros-
copy. Since the 1980s MS techniques are synergistically
combined with gas chromatography (GC) or liquid chroma-
tography (LC), producing two new powerful techniques,
called gas chromatographyeMS (GCeMS) and liquid chro-
matography-MS (LCeMS). Currently compared to NMR
spectroscopy GCeMS, LCeMS techniques are the most
commonly used analytical platforms in metabolomics. For
the capabilities of MS-based and NMR-based analytic plat-
forms for generating metabolic profiling datasets and the
advantages and disadvantages of MS-based and NMR-based
methods, the interested reader is referred to Chapter 2
(Section 2.4.2) of book.1 In this review article, we are
interested in the methods of pretreating and normalizing
metabolomics data for statistical analysis. Before per-
forming a statistical analysis of metabolomics data, we
must perform several preprocessing and pretreatment
steps on the metabolomics data regardless of which plat-
forms have been used to collect them.

Preprocessing and pretreatment

In our recent book An Integrated Analysis of Microbiomes
and Metabolomics,1 we described several processing steps
for metabolomics data analysis and then briefly introduced
data preprocessing for two platforms of metabolomics data
generating: preprocessing for MS-Based data and pre-
processing for 1H NMR data.

Generally seven data processing steps could be taken
from data acquisition to statistical analysis although in
practice not all these steps must be implemented in order1

(Fig. 1).
The terms “data preprocessing” and “data pretreat-

ment” have not been used consistently in metabolomics
literature. Narrowly “data preprocessing” refers to data
processing before data collection, including baseline
correction, phasing, peak alignment, binning (spectral
bins), and noise filtering. Sometime “variable scaling” and
“normalization” are also assigned into “data preprocess-
ing” steps. Usually “normalization” and “data pretreat-
ment” are used as two separate data-processing steps,
while both “centering and scaling” and “data trans-
formation” are considered as a “data pretreatment”.
Sometimes, “data pretreatment” also include the “missing
value estimation/imputation” and “noise filtering”.

Broadly, we can consider all data processing steps
before statistical data analysis as data preprocessing/
pretreatment.2 The goals of data preprocessing/pretreat-
ment1 are 1) to correct for or minimize instrumental arti-
facts and irrelevant biological variability to enhance the
signal-to-noise ratio (SNR); and 2) to appropriately trans-
form the data into interpretable spectral profiles through
centering and scaling data and reducing its dimensionality.3

Here, we focus on data preprocessing and pretreatment.
For statistical analysis, the interested reader is referred to
Chapters 5 and 6 of Statistical Data Analysis of Micro-
biomes and Metabolomics.4 Bijlsma et al5 and Karaman6

have discussed a general strategy for preprocessing and
pretreatment for statistical analysis. Particularly, Yang et
al7 have proposed a strategy to deal with the missing values
and to reduce mask effects from high variation of abundant
metabolites. In this review article, we provide an overall
preprocessing and pretreatment procedures and normali-
zation methods before performing statistical analysis. The
remaining of this article is organized in this way: We first
present data preprocessing. Then we describe how to deal
with zero and/or missing values and detect outliers. Next
we focus on introducing data normalization methods. Fol-
lowed that we investigate data centering and scaling, and
data transformation, respectively. Finally we briefly sum-
marize this review and provide some perspectives.
Data preprocessing

Preprocessing metabolomics data is challenging. As we
described above, although in general, for all the platforms
used to generate the data, data preprocessing/pretreat-
ment aim to correct for or minimize instrumental artifacts
and irrelevant biological variability as well as to appropri-
ately transform the data into interpretable spectral pro-
files, preprocessing (or pretreating) metabolomics data is
platform-specific in terms of their measurements. Due to
their different data recording, the necessary steps prior to
statistical analyses are different.8 For example, for NMR
data, when performing comparisons of spectra heavy shifts
or displacement of signals can occur along the axis of a 1H
NMR spectrum due to pH and other factors. Thus, for NMR
data it is crucial to apply an appropriate data preprocessing
to ensure that statistical analysis can systematically
compare the signals across the spectra so that any differ-
ences in signal intensity among groups of samples can be
detected. Several data preprocessing options can be per-
formed8 including 1) binning the data (aka. ‘bucket’):
adding the signal up over small chemical shift intervals; 2)
applying a peak fitting based on a spectral database; and 3)
working on the whole spectrum to evaluate and remove
those unstable and/or uninformative spectral regions and in
particular the water region and the signal-free high- and
low-frequency extremities so that a smaller number of
variables (metabolites) can be kept for statistical analysis.

For LC-MS data, big challenges come from variations in
retention times (RTs). Thus, to overcome this challenge,



Figure 1 Seven general data processing steps in metabolomics data analysis. The schematic summarizes general data processing
steps from data acquisition to statistical analysis in metabolomics study. Among these seven steps, Steps 2 to 6 are considered as
data preprocessing and pretreatment. The data preprocessing procedures (Step 2) in MS and NMR are similar but have slightly
different terms due to their data generation platforms.
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the LC-MS-based approaches are required to develop at a
time where detection of chromatographic peaks by ultra-
violet (UV) or flame ionization detector (FID) is the
norm.8 Like LCeMS data preprocessing, application of an
MS-based profiling approach results in outputs consisting a
three-dimensional (3D) table. Thus, the preprocessing of
GCeMS data aims to detect peaks via deconvolution and
peak integration to produce a two-dimensional (2D) table
(intensity for each sample of ‘features’ corresponding to
{RT/m/z} pairs) for statistical analysis.8 However, the
metabolite identification approaches between GCeMS and
LC-MS metabolomic data are inherently different.

With GCeMS method, reproducible mass spectra can be
obtained and very large databases can be consulted to
identify the metabolites based on characteristic recogniz-
able fragment ions. Therefore, the central efforts of pro-
cess are towards the automation and the accuracy and the
peak identification, integration and annotation. For
example, for MS-based analysis, data preprocessing gener-
ally includes denoising and baseline (background) correc-
tion, spectral peak alignment, peak picking (detection),
quality control and assigning data matrix; for NMR-based
analysis, the main data preprocessing includes baseline
corrections, spectral binning, peak alignment, peak
detection, and quality control and assigning data matrix
(see Fig. 1).

In summary, although the general preprocessing/pre-
treatment strategy still aims to make the data comparable
across samples regardless of instrumental variability, the
strategies used in MS-based methods are radically different
from those used in NMR-based method. The approaches
used in GCeMS and LC-MS metabolomic data are also
different. For the details on general preprocessing/
pretreatment strategy to be used in GCeMS and LC-MS-
based as well as NMR -based metabolomic data, the inter-
ested reader is referred to these publications.3,5,6,8
MS-based data preprocessing

MS-based analysis measures mass-to-charge ratios (m/z).
When MS is combined with GC or LC, the raw GC/LC -MS
data have three measured variables: m/z, chromatographic
retention time (RT) and intensity count which consists of a
3 dimensions (3D) data structure (see Fig. 2, which was
modified from Karaman (2017) 6).

A 2D data structure of features table (also called feature
quantification matrix) is generated through by peak picking
to remove the spectral noise and irrelevant biological
variability, e.g., column material, contaminants. The 2D
data structure of features table collects samples by me-
tabolites of quantified data (see Table 1). This matrix
contains all the quantified metabolic features from the
analyzed samples with the rows corresponding to the
samples and the columns to a list of variables (peak areas/
intensities) characterized by m/z and retention time in
minutes or scan number (m/z-RT pairs). That is, the raw
GCeMS data contains m/z value on the x-axis and retention
time on the y-axis.

MS data preprocessing can be divided into (1) denoising
and baseline correction, (2) alignment across all samples,
(3) peak picking, (4) merging the peaks, and (5) creating a
data matrix.9 We describe each of these steps below:

(1) Performing denoising and baseline (background)
correction9 to minimize the influence of noise



Figure 2 Visualized LC-MS profile in a 3D data structure. This schematic visualized representation of blood serum LC-MS profile in
a specific retention time interval. A 3 dimensions (3D) data structure represents three measured variables: mass/charge (m/z),
chromatographic retention time (RT) and relative intensity counts.
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introduced by variations in instrumental conditions.
This is typically done through various denoising
techniques10 and automatically using numerous types
of polynomial fitting, such as asymmetric least
squares (ALS)11 with B-splines, B-splines with penali-
zation (i.e., P-splines)12 and an orthogonal basis of
the background spectra.13

(2) Performing peak alignment to group detected peaks
across the samples regarding a m/z and a RT window
and to integrate the grouped peaks into peak height
or peak area.6 Alignment aims to correct the distor-
tions of the RT caused by column aging, temperature
changes or sometimes unknown deviations in instru-
mental conditions.9 RT axis could shift across the
samples and specifically in a long experimental run6

that are generally associated with changes in the
stationary phase of the chromato-graphic
column.14 Generally we can peak alignment either
before or after peak detection.15 For alignment,
usually some compounds (peaks) are used as reten-
tion time standards (internal standard).5 For the most
commonly used alignment techniques and methods,
Table 1 A data matrix generated by a metabolomics
platform.

n� m Peak1 Peak2 . Peakm

Sample1

Sample2

. . .
Samplen
the interested reader is referred to the review
article.16

(3) Performing peak picking/detection to detect each
measured ion in a sample and to assign it to a feature
(m/z-RT pair) after rejecting all peaks that are below
the arbitrary area threshold.5,6 First, find all local
maxima and the associated peak endpoints (i.e., local
minima) for each peak, and then calculate a signal-
to-noise ratio (SNR). Next, check the alignment, the
picked peaks and perform quality control (data
cleanup) to remove those peaks that do not represent
the compounds, such as typically all peaks with m/
z < 300 and with scan numbers <200 will be removed5

and keep those peaks that all local maxima (i.e.,
peaks) with SNR above the threshold.9

(4) Performing automated peak matching based on the
spectral signature to merge peaks.

(5) Finally, performing assignment to construct data
matrix. That is, assigning the integrated peak height
or peak area into a feature in a data matrix/data
table for further (pre-)processing and pretreatment.
The data matrix consists of annotated features (me-
tabolites) with (relative) abundances with sample in
each row, and each scan number in each column.
NMR -based data preprocessing

Similar to MS-based analysis, NMR-based analysis generates
a 2D structure of feature data matrix with the samples in
the rows and the spectral data points in the columns.

Also similar to MS-based analysis, the NMR-based anal-
ysis (e.g., 1H NMR analysis) requires to perform data
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preprocessing to mitigate non-biologically relevant effects.
The following data preprocessing steps could be performed:

(1) Performing baseline correction to remove or
minimize baseline low frequency artifacts and
experimental and instrumental variation among
samples on the spectra (this step is also applied to
GC/LC-MS-based analysis).2,15 The techniques used for
baseline correction include robust baseline
estimation,17 polynomial fitting, least-squares poly-
nomial curve fitting,18 asymmetric least squares.19,20

(2) Performing peak binning (bucketing) to reduce the
number of continuous variables. NMR records spectra
as continuous variables. Binning spectra is to first
divide the spectrum into a desired number of bins
(like histograms), and then sum all the spectral
measurements inside each bin as area under the
curve (i.e., one single value) to form new spectra
with fewer variables.2,6 Although binning can reduce
the number of variables, improve the implicit
smoothing of the spectra and potentially can correct
small peak shifts on the raw spectra or misalignments
on the aligned spectra; binning takes the risk to
remove real information of data or produce false in-
formation, resulting in less precise subsequent sta-
tistical analysis if it is used inappropriately.2 Thus,
the feature (peak) detected have poor performance
by binning-based methods than by peak-based
methods,15 especially performance is even poor when
spectral unalignment is significant, or using the same
spectral bin to capture multiple peaks from different
metabolites.

(3) Performing peak alignment to align metabolite signals
across runs. Like in MS-based analysis, in NMR-based
analysis, spectrum peaks can be shifted and are
observed in parts per million (ppm) axis which is
caused by various variations such as instrumental,
experimental or even over samples (e.g., different
chemical environment of the sample like ionic
strength, pH, or protein content).15 Metabolite signals
can be aligned by several approaches. Among them,
the simplest peak alignment is to divide the spectra
into a number of local windows to match the shifted
peaks across spectra. More robust peak alignment is to
optimize correlation warping, which uses section
length and flexibility parameters to control how
spectra can be warped towards a reference
spectrum.2,21 Other alignment algorithms include fast
Fourier transform cross-correlation,22 e.g., the very
fast icoshift alignment,23 and recursive segment-wise
peak alignment for metabolic biomarker
recovery.24 Like in MS-based analysis, most alignment
algorithms in 1H NMR analysis require a reference
spectrum. We can randomly select a reference spec-
trum, or we can use a sample spectrum that is the
closest to the rest of the sample spectra, and we even
can create a reference spectrum using the mean or
median spectrum from the entire sample set or the
quality control samples.6

(4) Finally, performing quality control and assigning data
matrix as in GC/LC-MS-based analysis after peak
alignment and peak detection. Many pre-processing
methods have been developed. These have been
reviewed (through 2015) by Alonso et al15 The R
package PepsNMR (or Packaged Extensive Pre-
processing Strategy for NMR data) for 1H NMR metab-
olomic data pre-processing was introduced by Martin
et al3 to provide an exhaustive and flexible workflow
to deal with typical features of raw 1H NMR data and
to cover the preprocessing and pretreatment steps.

In summary the preprocessing by either MS or NMR
constructs a data matrix containing the relative abun-
dances of a set of mass spectra for a group of samples or
subjects under different conditions (e.g., disease vs treat-
ment). The metabolomics data matrix are typically con-
structed in such a way that each row of the data matrix
represents the subject and each column represents the
mass spectra (metabolite intensities or metabolite relative
abundances, peak or peak intensities). This data format is
the same or similar as that are used in other ‘omics’ studies
such as microbiome data matrix. We can further perform
preprocessing and pretreatment steps and statistical data
analysis on this data matrix.

Dealing with zero values and outliers

Both zero values and outliers challenge metabolomics data
processing and statistical data analysis, but it is not easy to
deal with.

The sources of zeros

Zero values could be caused by both biological and technical
resources.5,25 We can categorize zero values in metab-
olomics into four sources: (1) structural zeros, (2) sampling
zeros, (3) below the limit of detection (LOD), and (4)
automatically transformed zeroes from the negative values.
The first three kinds of zeros are the primary sources.

(1) Structural zeros are referred to those specific peaks
that are not presented in sample/chromatogram for
genuine biological reasons. (2) Sampling zeros are referred
to those peaks that present in samples but are missed by
peak picking. In the metabolomics data sets regardless
which methods are used to generate, it is often that com-
pounds in certain samples cannot be identified/quantified,
occurring missing values in some of the samples. Here, the
missing values occur due to sampling. For example, GC/LC-
MS analyses utilize chromatographic separation prior to MS
and thus require a complex deconvolution step to transform
these 3D data matrices into lists of 2D matrix, which
frequently contains missing values in the samples. (3) Some
intensities or abundances are below the detection limit of
the mass spectrometer.5 For example, generally the badly
shaped peaks and peaks with low intensity cannot be
detected during the peak picking process. (4) There is still
another source of zero values that is the negative values
resulted from metabolomics measurements. These nega-
tive values are usually considered as spectral artifacts or
noise, therefore are transformed automatically into
zeros.26 In summary, both technical errors and biological
factors, or a mixture of the two may cause missing value
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data.25 The zero and/or missing values pose a big chal-
lenging in data processing and downstream statistical data
analysis of metabolomics data. High percentage of zeros
could affect the correlation between variables and deteri-
orate the statistical analysis.
The approaches of dealing with zeros

It should be recognized that there is no general strategy for
dealing zeros because in practice identifying different
sources of zeros is difficult.27 However, a large percentage of
zeros poses a major challenge for statistical analysis and
misleads the analysis results. Thus, in metabolomics study,
researchers usually propose some practical methods to
handle zero values. Typically there are three approaches to
deal with the zero values present in the samples. We
describe them below.

(1) One simple way is to remove the zero values based on
a threshold such as the ‘80% rule’28 or ‘modified 80%
rule’.7 By applying the ‘80% rule’, a metabolite is
kept for data analysis if it has a non-zero value for at
least 80% samples, while the modified’80% rule’
considers that the missing values occur due to below
the detect limitation in one specific class. Thus the
‘80% rule’ is modified to keep a metabolite for data
analysis if it has a non-zero value for at least 80% in
the samples of any one class. This approach will
significantly reduce the number of zeros and facili-
tate statistical analysis. But it ignores the fact that
the zero values could be caused by different sources
and especially a large proportion of zeros in a study
may be missing values.

(2) Another approach is to impute the missing values
based on imputation options such as mean, minimum,
half of the minimum of non-missing values or
zero.26 We summarize the imputation methods used
for missing metabolomics data in Table 2.

However, it was shown that the choice of imputation
methods influences normalization and statistical analysis
results.44

(3) More convincing strategy is based on missing data
estimation algorithms (or types) to choose different
methods to handle missing values. Generally, there are
three types of missing values45: missing completely at
random (MCAR), missing at random (MAR) and missing not at
random (MNAR). Specifically, for metabolomics data, if the
missing values are due to random errors and stochastic
fluctuations in the data acquisition process, incomplete
derivatization or ionization, then they are MCAR38; if the
missing values are caused by other observed variables in
suboptimal data preprocessing such as inaccurate peak
detection and deconvolution of co-eluting compounds, then
they are MAR.38 The censored missing values due to limits of
quantification (LOQ) are considered as MNAR.46 For
example, the missing values that often occur due to LOQ
when using MS technique to identify the targeted panel of
bile acids are belong to MNAR.38 However, the challenge is
that missing data often do not occur randomly but rather as
a function of (at least) peak abundance (signal intensity)
and mass-to-charge ratio (m/z value)25 and even they occur
randomly, it is difficult to differentiate MCAR from MAR
data.47 In practice, the even more challenge is that the
important biological information is potentially embedded in
the peaks with missing values.25 In summary, it is still
difficult to discern sampling zeros from biological zeros or
zero values that is truly physically or biologically absent in
sample based on missingness algorithms. Thus this
approach also cannot provide guidelines for imputation.

In a recent survey of 47 cohort representatives from the
Consortium of Metabolomics Studies (COMETS),48 eighty five
percentage of studies reported that had missing values in
metabolomics data, which is due to the LOD/quantification
of the platform, low abundance, and rare metabolites and
co-elution issues and failed quality control (QC). In most
studies, the missing values were imputed most commonly
by a fraction of the lowest values or by zero or by the
minimum value or KNN. Most studies excluded metabolites
with a percent of missingness above a certain threshold
(e.g., median 50%; range 5%e90%).

However, there are no agreement on which imputation
method is the optimal missing value estimation approach.
For example, Hrydziuszko and Viant25 found that the k-
nearest neighbor imputation method (kNN) is optimal for
direct infusion mass spectrometry datasets among eight
compared imputation methods they conducted (see Table
2). Gromski et al34 compared five methods for substituting
missing values: zero, mean, median, k-nearest neighbors
(kNN) and random forest (RF) imputation (see Table 2) on
GC/MS metabolomics data in terms of unsupervised and
supervised learning analyses and biological interpretation.
They demonstrated that RF performed best and kNN second
in both principal components-linear discriminant analysis
(PC-LDA) and partial least squares-discriminant analysis
(PLS-DA) supervised methods. While Wei et al38 also
comprehensively compared eight imputation methods for
different missing data estimation algorithms using four
metabolomics datasets. They demonstrated that RF had the
best performance for MCAR/MAR data and QRILC favored
the left-censored MNAR data (see Table 2).

Based on above discussion on dealing with missing values
in metabolomics data, the overall take-home message is:
(1) Different sources of missing values in metabolomics data
need different ways to deal with. (2) For a given missing
metabolomic data, particular caution needs to be taken in
choosing an appropriate imputation method. Because
missing data may actually represent the true biological
differences between groups and hence using an inappro-
priate method to estimate missing value may not only fail
to detect significant peaks, but instead introduce further
bias if the method used results in non-significant peaks as
significant difference between groups.25 And (3) currently a
comprehensive and systematic evaluation of different
methods for handling missing values using different sources
of metabolomics data is still needed.
Detecting outliers

Related to dealing with missing values is the detection and
handling of possible outliers (i.e., extreme metabolite
value) within the metabolomics data. Several methods



Table 2 Imputation methods for missing metabolomics data.

Method Definition

An arbitrary small value Replacing the missing values with an arbitrary small value.
Zero29 Replacing the missing values with zeros.
HM (Half of the Minimum)30,31 Replacing missing value with half of the minimum of non-

missing values in that variable (metabolite/peak).
Mean31,32 Replacing missing value with the mean of the non-missing

values across all samples for that variable (metabolite/peak).
Median32 Replacing missing value with the median of the non-missing

values across all samples for that variable (metabolite/peak).
kNN(k-nearest neighbors)31e33 � Adopted from microarray with samples by genes (variables)

format for gene expression data; for each gene with missing
values, uses Euclidean metric to find the k nearest genes and
then imputes missing values by averaging those non-missing
values of its neighbors

� For metabolomics data, k nearest samples are used instead
and replaces missing value by means of those non-missing
values of its neighbors.

� But still there exists identifying the k nearest neighbors for
each metabolite and then replacing the missing value by
averaging of non-missing values of its neighbors.34

RF (random forest)35 � Imputing missing values with RF.
� That is, first builds a prediction model from training set by
replacing each missing data value for particular target vari-
able with a mean of non-missing values for that variable
(metabolite/peak).

� Then predicts the target variable (metabolite/peak)with
missing values iteratively.

SVD (singular value
decomposition)31,36,37

� First initializes all missing data with zero.
� Then iteratively estimates these zero values as a linear
combination of the k most significant eigen-variables until
convergence.

� To use SVD, the metabolomics data matrix is typically scaled
and centralized first.38

QRILC (quantile regression imputation
of left-censored data)39

� Adopted from MS-based proteomics missing data imputation
method.

� Specifically designed for left-censored data.
� Able to impute the left-censored missing truncated metab-
olomics data for MNAR.

� Replacing missing values with randomly drawing from a
truncated distribution estimated by a quantile regression.

� To improve the imputation accuracy, typically first conducts
log-transformation first.38

BPCA30,31,40,41 � Replacing missing values using Bayesian PCA (BPCA).
PPCA37 � Replacing missing values using probabilistic principal

component analysis (PPCA).
MI42 � Replacing missing values using multivariate imputation (MI)

by chained equations.
EM and MCMC43 � Replacing missing values using multiple imputation with

expectation maximization (EM) algorithm and Monte Carlo
Markov chain (MCMC) method.
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have been developed so far, including: (1) Usually check-
ing the respective peak areas and the (relative) ratio of
the mean and median of the distribution. The median is
considered more robust with respect to outliers in unim-
odal distributions.32 (2) Predominantly utilizing principal
component analysis (PCA) to identify outliers followed by
principal component partial R-square (PC-PR2) and
analysis of variance (ANOVA) in a survey of above cited
COMETS.48

Recently two specifically designed algorithms for the
identification of outliers for metabolomic data have been
proposed: (1) Cellwise outlier diagnostics using robust
pairwise log ratios (cell-rPLR)49 was proposed for use when
the measured values are not directly comparable due to the
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small size effect. This method is useful for biomarker
identification, particularly in the presence of cellwise
outliers. (2) Kernel weight function-based biomarker iden-
tification technique was proposed for missing data impu-
tation method to handle missing values and
outliers.50 Basically this technique uses the group-wise
robust singular value decomposition, t-test, fold-change
analysis, and SVM-based feature selection approaches to
identify biomarker correctly by imputing missing values and
solving outliers problem simultaneously. The goal is to
improve the accuracy of imputation and the accuracy of
biomarker identification deteriorated by outliers.
Data normalization

Followed by preprocessing and dealing with zeros and
outliers, we typically perform two groups of methods to-
wards statistical analysis of metabolomics data51: The first
group of methods is to remove unwanted sample-to-sample
variation, and the second group of methods is to adjust the
variance of the different metabolites to reduce sample
heteroscedasticity. We typically refer the first group of
methods as data normalization and include centering,
scaling and log transformations into the second group of
methods. Because the first group of methods is generally
performed on rows while the second group of methods on
columns, thus in terms of data structure of metabolomics
data matrix, they are also referred to as row-wise
normalization and column-wise normalization,52 which are
usually performed sequentially.

Here, we treat centering, scaling and log trans-
formations as the different processing steps and reserve the
name of normalization for row (sample)-wise normalization
which include normalizing to total spectral area, normal-
izing to a reference sample, and normalizing to a reference
feature/metabolite-based approaches. Normalization as
well as centering, scaling and log/power transformations
belong to preprocessing/pretreatment methods, and are
performed prior to statistical data analysis of metabolites.
Their overall goal is to allow the same variable (metabolite)
within an array of different spectra comparable26 and thus
to improve the reliability and interpretability of down-
stream statistical analysis.

A normalization step has been considered as be neces-
sary due to both biological factors and technical reasons.
For example, unspecific variations of the overall concen-
trations of samples, and a different number of scans or
different devices that are used to record spectra could have
the absolute signal intensities of peaks.53

Most common sample-based normalization methods
scale the spectra to the same virtual overall concentration
to account for different dilutions of samples. The goal of
sample-based normalization is to make samples compara-
ble to each other by removing or minimizing the unwanted
systematic errors/biases and experimental variance,54 or
specifically, to reduce systematic variation or bias in the
data due to instrumental or sampling problems (e.g.,
sources of experimental variation, sample inhomogeneity,
differences in sample preparation, ion suppression), or to
separate biological variation from variations introduced in
the experimental process.52 Mathematically, the
normalized intensities of metabolite peaks represent the
fraction of initial intensities of metabolite peaks over the
summation of the integrated intensities with an appro-
priate power for all the spectral regions.53

This section focuses on the topic of normalization, the
topics of centering, scaling and log/power transformations
will be covered in next sections.

Constant sum normalization (CSN)

CSN (or total spectral area normalization or integral
normalization) normalizes the spectra to a constant sum
(i.e., total spectral area) by dividing each signal metabolite
intensity or each bin (if normalization is operated after
binning or bucketing) of a spectrum by the total peak areas.
That is, transform every single metabolite into a fraction of
the total intensity of the “spectrum”. For metabolic
profiling of biofluids in 1H NMR metabolomics, the default
standard normalization is integral normalization (also re-
fers to CSN),55 normalizing the individual spectra to the
same total integral intensity over the whole
profile.53,56 CSN assumes that the total peak area of a
spectrum is constant across the samples, i.e., the total
profile is directly proportional to the total concentration of
the sample. For example, the integral normalization as-
sumes that the total integrals of spectra is a function of the
overall concentrations (dilution) of samples.53 Although this
approach has been widely used in both NMR and MS data as
well as in other “omics” (e.g., transcriptomics, prote-
omics); however, this kind of normalization has the weak-
nesses: (1) Is not robust and inaccurate due to its above
assumption.53,55 (2) It could result in incorrectly normalized
data/scaled spectra due to being strongly influenced by
very large signals or massive amounts of single metabolites
in samples.53,57

Probabilistic quotient normalization (PQN)

PQN method53 was proposed to normalize spectra on the
basis of the most probable dilutions, which estimates and
utilizes a most probable quotient between the signals of
the corresponding spectrum and of a reference spectrum
as the normalization factor. PQN assumes that concen-
trations of a majority of metabolites remain unchanged
across the samples and hence the changes in the concen-
trations of single metabolites only influence parts of the
spectra, whereas changes of the overall concentration of a
sample influence the complete spectrum.53 PQN uses a
reference spectrum to calculate the quotients, which
makes it differentiate from integral normalization, which
uses the total integral as marker of the sample concen-
tration. PQN method has the strengths, including: (1) It is
more exact and more robust than the integral normaliza-
tion.53 (2) It is flexible to choose the reference spectrum
from either a single spectrum of the study, a “golden”
reference spectrum from a database, or a median or mean
spectrum of all spectra in the study or in a subset of the
study53 although the most robust reference spectrum is
the median spectrum of control samples. (3) It reduces
some outlier effects of the CSN method because of using a
median as a reference. (4) It can provide adequate
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normalization for most clinical metabolomics.53 And (5)
particularly it was showed that PQN along with the Vari-
ance Stabilization Normalization (VSN), the log trans-
formation are the three best methods among those 16
compared methods of normalization, scaling and trans-
formation in terms of the partial least squares discrimi-
nant analysis (PLS-DA) and the area under the curve values
(AUCs).58

However, PQN also has the weaknesses, including: (1)
The results in differential metabolites analysis using PQN
could be false positives. (2) It is not adequate to use PQN to
normalize the data when the number of variables (metab-
olites) is greater than the number of samples (e.g., when
the number of metabolites is greater than half of the
number of samples).59

PQN can be implemented in MetaboAnalyst60,61 and
other examples of using PQN are available from these
studies.62e64
Quantile normalization (QN)

Quantile Normalization65 was originally proposed for mul-
tiple high-density oligonucleotide array. QN employs a
nonparametric approach to normalize measured intensities
from a single fluorophore to a common distribution. It as-
sumes that the distribution of metabolite abundances in
different samples is similar, and two distributions can be
considered to identify in statistics properties by adjusting
their distributions.

QN normalizes the data through the following five steps.
Step 1: Lists and assigns each of sample to a column and

metabolites to a row. Step 2: Sorts each column by intensity
from lowest to highest. Step 3: Calculates the arithmetical
mean of each row according to sorted rank. Step 4: Sub-
stitutes the mean value for each intensity value in the row.
Step 5: Restores the original order of the assigned mean
values to find the normalized relative intensity/abundance
for a given metabolite.

QN method has the strengths, including: (1) It was
demonstrated as the best method for reducing variability
compared to other normalization methods (e.g., central
tendency, linear regression, locally weighted regression,
cyclic loess, contrast-based methods) in proteomics and
microarray data65,66 and the best method for removing bias
between samples, and accurately reproducing fold changes
in NMR-based metabolomics data.67 (2) It was also showed
that QN reached the highest AUC values in all runs in a
comparative study and outperformed the widely used var-
iable scaling methods, as well as was the only method that
performed consistently well in all tests.67 And (3) specif-
ically compared to 1-norm and 2-norm normalization
methods,68 QN had the most obvious ability to differentiate
grouping memberships in principal component analysis
(PCA), reduced the variances and no outlier was detected
in the box plot, and showed the largest minimization of
systematic errors by QeQ plot from human LC-MS-based
metabolomics data.69

However, the main weakness of QN method is that it only
has a moderate quality of classification result for small data
sets and thus QN method was recommended for use in large
dataset with sizes of n � 50 samples.67
Vector length normalization (VLN)

In mathematics, a norm is a function from a real or complex
vector space to the nonnegative real numbers. It commutes
with scaling by calculating the distance from the origin. In
general, absolute-value norm (1-norm) and the Euclidean
norm (2-norm) are commonly used. The absolute-value
norm is a norm on the one-dimensional vector space. To
obtain a vector of norm 1, multiply any nonzero vector by
the inverse of its norm. However, by far the most commonly
used norm is the Euclidean norm, a norm on the n-dimen-
sional Euclidean space. The Euclidean norm is the Euclidean
distance of a vector from the origin, which is calculated by
the ordinary distance from the origin to the point X based
on the Pythagorean theorem. The Euclidean norm sets the
Euclidean distance in the multidimensional space to be
constant.

VLN method70 treats the spectra as vectors and a total
vector length as constraint. It sets the lengths of the vec-
tors to 1 to adjust different concentrations. VLN is to
normalize the data set by scaling each sample-vector to
unit vector norm. VLN assumes that the concentration of a
sample determines the length of the corresponding vector,
whereas the content of a sample determines the direction
of the vector. The absolute-value norm (1-norm) is to divide
each variable (metabolite) by the sum of the absolute value
of all variables (metabolites) for a given sample to return a
vector with unit area.68 As a row-wise normalization, the
Euclidean norm unifies the influence of each sample. The
Euclidean norm (2-norm) is to divide each variable
(metabolite) by the sum of the squared value of all vari-
ables (metabolites) for a given sample to return a vector
with unit length.68 We can geometrically interpret the
Euclidean norm as a projection of the samples x to a
hypersphere.70 Because the length of the sample vector is
scaled to one, the ratios between variables (metabolites)
do not change. Thus the effect of vector normalization is
closely related to correlation analysis, which leads to
project the highly correlated samples close to each
other.70 VLN method has been used in metabolite finger-
printing70 and the normalization effects of 1-norm and 2-
norm methods were evaluated with NMR-based metab-
olomics data68 and LC-MS-based metabolomic data.69

The Euclidean norm has the strengths, including: (1) It
was evaluated that the Euclidean norm has better classifi-
cation effect than absolute-value norm in separation of
group membership based on PCA.68,69 (2) It can achieve
better results of separation than unit variance scaling (as a
column-wise normalization, it unifies the influence of each
variable) based on PCA. However, VLN methods also have
the weaknesses. Particularly, one study using human LC-MS-
based metabolomics data69 showed that compared to QN,
both absolute-value norm and Euclidean norm were less
obviously able to differentiate groups in PCA, to reduce the
variances and to detect outliers in the box plot, and had the
less minimization of systematic errors by QeQ plot.69
Internal standard Normalization (ISN)

ISN is to divide the concentration of each metabolite by the
concentration of an internal reference metabolite.
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Creatinine normalization (CN) method is a special case of
the ISN method, adopting from the field of clinical
chemistry.71 In metabolomics, CN was proposed in early
publications.72 CN is to divide the concentration of the
metabolite by the urinary creatinine (UCr) concentration
obtained in the same urine sample,73 resulting the con-
centration of target analyte per milligram of creatinine.
The goal of CN is to adjust for the variation of spot urine
samples in dilution effects, sample volume and the rate of
urine production by normalizing analyte quantification for
specimen concentration in a ratio format.

CN is based on the assumption that creatinine is
excreted into urine at a normal and constant rate in healthy
individuals (creatinine clearance), and thus creatinine can
be used as an indicator of the concentration of
urine.53,74,75 For NMR, spectra of urine creatinine concen-
tration (peak area) is often used as reference to adjust for
urine analyte concentration72,73,76 and hence to correct for
the variability observed in individual sample volumes.57

However, using urinary creatinine as a normalization
factor has the weaknesses, including: (1) Biologically, CN
lies on the assumption that constant excretion of creatine
into urine and thus the concentration of creatine is directly
related to the urine concentration.77 This may not be true
because in many diseases (e.g., kidney disease), the renal
function and glomerular filtration are affected, and im-
pacts urinary creatinine concentration. Thus, UCr levels
cannot be completely attributable to variations in urine
concentration.73 The biological challenges of using creati-
nine normalization lies on the factor that changes of the
concentrations of creatinine are caused by metabolomic
responses.78,79 (2) Actually, adjusting for urine concentra-
tion is similar to quantify a source of random noise across
all samples, likely adjusting for other factors that might be
specific to a group of subjects (e.g., renal function or
reduced muscle mass).73 Thus using urine concentration as
normalization factor leads to inaccurate correction.80 And
(3) It in practice has both technical and biological
challenges.53
Other normalization methods

Combining different approaches of normalization is more
adequate for most matrices commonly encountered in
clinical metabolomics.81 Several normalization methods
have been developed that can be combinedly used in
metabolomics data, including: (1) MS Total Useful Signal
(MSTUS)57 and normalization factor for each individual
molecular species (NOMIS)82 for LC/MS based metabolomics
data. (2) Histogram matching (HM) normalization,83 group
aggregating normalization,59 maximum superposition
normalization algorithm (MaSNAl),84 time-domain algo-
rithm85 and subspace time-domain algorithm86 for NMR-
based metabolomics data.

Other normalization methods that were originally
developed in other fields, such as microarray experiments,
have been also adopted to normalize metabolomics data.
For example: (1) Cubic-spline normalization87 from DNA
microarray experiments. (2) Cyclic loess normalization88,89

from microarray experiments. (3) Non-linear baseline
normalization,90 contrast normalization 91from
oligonucleotide arrays. And (4) linear baseline normaliza-
tion65,92 from oligonucleotide array.

Data centering and scaling

To analyze metabolomics data appropriately, three cate-
gories of pretreatment usually also be performed: (1)
centering, (2) scaling, and (3) transformation. The goals of
data centering, scaling and transformations are to reduce
the impact of very large feature values and to make all
features more comparable or normally distributed.52

Mean centering

Mean centering and unit variance scaling are the two
traditional scaling methods that can be used for pretreating
metabolomics data. Mean-centering or unit variance
scaling93 is used to remove the overall offset among other
benefits such as reducing rank of the model, increasing data
fitting and avoiding numerical problems.94 Let xi be each
value of the data, x be the mean of the xi, n be the number
of data points, and yi present the data after centering, then
the (mean) centering is defined as:

yiZx� x ð1Þ

Mean centering is just to subtract the mean value from
each measured metabolite. The aim of centering is to
convert all the metabolite concentrations to fluctuate
around zero instead of around the mean of them. The ef-
fect of centering is to correct for the differences between
high and low abundant metabolites, allowing the data
analysis to focus on the mean of the metabolite concen-
trations, i.e., the differences of the data and instead of the
similarities in the data. However, the disadvantage of
centering is that: (1) It is not always sufficient to remove
the biases when data is heteroscedastic.95 And (2) it could
result in a parsimonious model.

Scaling

Scaling is usually conducted after replacing missing values.
Scaling is to divide each variable by a scaling factor. In
other words, scaling is to time each variable by a scaling
weight (the reciprocal of its scaling factor). Scaling aims to
adjust for the fold change differences between the
different metabolites; it converts the data into differences
in concentration relative to the scaling factor. Scaling is
applied in metabolomics data for several reasons including
to adjust scale differences, accommodate for hetero-
scedasticity, and allow for different sizes of subsets of
data.94 Different variables could have a different scaling
factor, which are named as different scaling methods.
Based on whether using a data dispersion or a size measure
as scaling factor, we can divide scaling into two subclasses:
dispersion-based scaling and average-based scaling
methods (See Table 3). Unit variance scaling,96 pareto
scaling,97,98 range scaling,28 and vast scaling belong to the
former category, while level scaling and linear baseline
scaling belong to the latter category. We summarize their
definitions in Table 3 and describe them separately.Where,



Table 3 Definitions of scaling methods.

Method Definition

Dispersion-based scaling

Unit variance scaling96 yiZ
xi � x

s
(2)

Pareto scaling97,98 yiZ
xi � xffiffiffi

s
p (3)

Range scaling28 yiZ
xi � x

ðximax � ximinÞ
(4)

VAST scaling99 yiZ
xi � x

s
,
x

s
(5)

x-VAST scaling7 yiZmax
�x1
s1
;
x2

s2
;
x3

s3
/

xj
sj
/

xc
sc

�
,xi (6)

Average-based scaling

Level scaling95 yiZ
xi � x

x
(7)

Linear baseline scaling65 yiZ
�~xbase

~xi

�
xi (8)
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yi present the data after centering, bsZ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

iZ1
ðxi�xÞ

n�1

r
is the

estimated standard deviation, n is the number of data
points, and xi denotes the each value of the data and x is
the mean of xi. ~xbase are the intensities of the baseline
spectrum and ~xi is the trimmed mean intensity. xj and sj
are the mean and standard deviation of the variable for
the jth class, respectively, and c is the total number of
classes.

Unit variance scaling

Unit variance scaling (aka unit scaling or autoscaling) is a
commonly used scaling or standardization method. It uses
the standard deviation(s) as the scaling factor (the scaling
weight is the reciprocal of its standard deviation 1

s
) to

convert the data to be analyzed on the basis of correlations
instead of covariances, which is similar to center-
ing95,96(see Table 3). In metabolomics, the goal of unit
variance scaling is to convert metabolites into correlations
of metabolites. Unit variance scaling has been considered
as the probably most reliable scaling method.100 After unit
variance scaling, all metabolites are equally weighted and
hence having equal potential to influence the model. In
other words, after performing unit variance scaling, the
data will be allowed for better recognition,95 and hence
leading to favor systematic changes with small variance and
avoiding the domination by a few high-intensity variables in
the final solution.94

However, like centering, unit variance scaling: (1) Does
not provide the prior information about variable impor-
tance99 or confounds the potential useful information
embedded in peak height, resulting in diminishing the mask
effect of the abundant metabolites.7 (2) It tends to inflate
the importance of small metabolites and because small
metabolites are more likely to contain measurement errors
and thus inflate the measurement errors.95 And (3) should
not be used for the data with poor signal-to-noise ratio
(i.e., noisy) because of its equally weighting all
metabolites.9
Pareto scaling

Pareto scaling uses the square root of the standard devia-
tion (

ffiffiffi
s

p
) as the scaling factor (see Table 3), which provides

an intermediate scaling effect between the no scaling and
unit variance scaling. Comparing to unit variance, pareto
scaling is closer to the original measurement because it
divides the centering value by

ffiffiffi
s

p
instead of s. The goal of

pareto scaling is to reduce the relative importance of large
values, while keeping data structure partially intact. Due to
using the square root of the standard deviation of the data
as scaling factor, compared to unit variance scaling, pareto
scaling method can reduce more the large fold changes in
metabolite signals, but leaves the extremely large fold
changes unchanged.67 Pareto scaling can be used to
improve the pattern recognition for metabolomics data via
tailoring sensitivity reduction.7,101 However, pareto scaling
is sensitive to large fold changes.95
Range scaling

Range scaling uses the difference of maximum between
minimum (i.e., the biological range) as scaling factors (see
Table 3). The goal of range scaling is to make metabolites
be compared relative to the biological response range.
Range scaling equally weights importance of all metabo-
lites. It can be used to fuse MS-based metabolomics
data.28 However, range scaling not only could result in the
inflation of the measurement errors, as in the case of
autoscaling,95 but also is sensitive to outliers because the
biological range is estimated by only two values (the
maximum and minimum values), which does not adjust for
smaller and larger values of the data.
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Variable stability (VAST) scaling

In the fields of metabolomics and proteomics, one common
problem is to deal with the mask effect of the abundant
metabolites. Unit variance scaling prefers to systematic
changes with small variance and is vulnerable to diminish
the mask effect of the abundant metabolites such as in
peak height and peak multiplicities. VAST scaling99 was
proposed to weight each variable according to a metric of
its stability (see Table 3). The stable variables are the
variables that do not have strong variation. VAST scaling
uses the coefficient of variation (cv Z s

x
, where the mean of

each variable is calculated on the uncentred dataset) as the
stability parameter or scaling factor. In other words, VAST
uses x

s
as the scaling weight.

VAST scaling sequentially applies mean-centering and
unit variance scaling (autoscaling); i.e., first puts each
variable on ‘a level footing’, and then scaling by the co-
efficient of variation (1/CV) to incorporate stability.99 Thus,
we can consider VAST scaling as an extension of unit vari-
ance scaling with one step further by actually down
weighting unstable variables.99 Vast scaling puts a higher
weight to the variables (metabolites) with a small relative
standard deviation(s) through using the coefficient of
variation (cv). Thus by using VAST scaling the metabolites
with a small relative s are higher important, while those
metabolites with a large relative s are getting less impor-
tant95; allowing us focus on the less fluctuated metabolites.
VAST has been used to identify biomarkers for the NMR-
based metabolomics data102 and has been shown that it
improved the class distinction and predictive power of
partial least squares discriminant analysis (PLS-DA)
models.99 However, VAST scaling is not effective for the
metabolites with large variations.
X-VAST scaling

Above we reviewed that unit variance scaling favors sys-
tematic changes with small variance but confounds the
potential useful information embedded in peak height and
peak multiplicities. In order to diminish the adverse ef-
fects, VAST scaling assigns a weight according to its stability
to each variable (metabolite) and orthogonal signal
correction (OSC)103 was proposed to extract the compo-
nents with the maximum variance orthogonal to response.
However how to reduce the mask effect in analysis of
metabolomics data remains unsolved. The ‘x-VAST’
method7 was developed to as a part of pretreatment
strategy to amend the measurement deviation enlarge-
ment. This pretreatment strategy consists of three steps:

Step 1: Uses a ‘modified 80%’ rule to reduce effect of
missing values (i.e., the artificial cutoffs from the peak
alignment). The ‘80% rule’ developed by Smilde et al28 is to
keep a variable when this variable has a non-zero value for
at least 80% of all samples. However, when this rule is
implemented, some perfect differential metabolites will be
lost due to their concentrations below the detect limitation
in one specific class. The ‘modified 80% rule’ uses the class
information as the supervisor to keep a variable if this
variable has a non-zero value for at least 80% in the samples
of any one class.
Step 2: Uses unit-variance and Pareto scaling methods to
reduce the mask effect from the abundant metabolites.

Step 3: Uses stability information of the variables
deduced from intensity information and the class informa-
tion to assign suitable weights to the variables and hence to
fix the adverse effect of scaling.

However, the strategy of excluding zeros at any miss-
ingness threshold is arbitrary.104

Level scaling

Average-based scaling method uses average as scaling fac-
tors, resulting the values that are changes in percentages
compared to the mean concentration. One average-based
scaling method is level scaling, which uses the mean con-
centration (i.e., the average value of each metabolite) as
the scaling factor (see Table 3). Level scaling converts the
metabolite concentrations to represent changes in per-
centage of metabolite concentrations compared to the
mean concentration of the metabolite. Level scaling fo-
cuses on relative changes and hence is suitable for identi-
fying relatively abundant biomarkers. It has been used in
LC-MS study of urinary nucleosides.105 However, level
scaling has the weaknesses: It is prone to inflate the mea-
surement errors.95

Linear baseline scaling

In the metabolomics literature, linear baseline scaling (LBS)
has been used,65 which normalizes each sample spectrum
to the baseline. Usually, the spectrum having the median of
the median intensities is chosen as a baseline spectrum.65

LBS assumes that there exists a constant linear relationship
between each metabolite of a given spectrum and the
baseline. However, the assumption of a linear correlation
between spectra has been considered as an
oversimplification.67

Data transformation

Following data scaling it is often necessary to adjust the
variance of the data by using transformation. The variance
of non-induced biological variation often correlates with
the corresponding mean abundance of metabolites, which
leads to considerable heteroscedasticity in the data, and
impacts subsequent data analysis. Three overlapped goals
of transformations95 are: (1) to correct for hetero-
scedasticity,106 (2) to convert multiplicative relations into
additive relations, and (3) to make skewed distributions
(more) symmetric. Both log and power transformations
reduce large values relatively more than the small values.
Generally the log and the power transformations, and
variance stabilization normalization (VSN)107,108 are the
three usually used transformations in metabolomics to
reduce heteroscedasticity.

Log transformation

The log transformation has two most common applications:
(1) to reduce the skewness of the data and (2) reduce the
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variability due to the outliers with the common belief that
the log transformation is able to make data conform more
closely to the normal distribution.109,110 Log transformation
is defined as:

yiZ logðxiÞ ð9Þ

By default the natural logarithm is used. The general
form of log transformation with adding the shift parameter
–log (x, base) computes logarithms with any desired based.
In metabolomics studies the base 2 log transformation is
commonly used. The normal distribution is widely used for
analysis of continuous outcomes. However, in practice such
a well-shaped symmetric distribution rarely exists. Almost
all data in real studies are skewed to some extent. When
the data is not normally distributed, the log transformation
is used as a common remedy to deal with the skewed data.
The underlying assumption of the log transformation is that
the transformed data have a distribution equal or close to
the normal distribution.110

The log transformation has been reported as a powerful
tool to convert right-skewed metabolomics data to be
symmetric, to adjust heteroscedasticity and to transform
the relationship of metabolites from multiplication to
addition.95,111 It was shown that the log transformation
along with PQN and Variance Stabilization Normalization
(VSN), are the three best methods among those 16
compared methods of normalization, scaling and trans-
formation in terms of the partial least squares discriminant
analysis (PLS-DA) and the area under the curve values
(AUCs).58 Although log transformation make multiplicative
models additive to facilitate the data analysis and can
perfectly remove heteroscedasticity if the relative stan-
dard deviation is constant106; however, log transformation
has three main drawbacks: (1) It is unable to deal with the
value zero because log zero is undefined. (2) It has limited
effect on values with a large relative standard deviation,
which unfortunately is usually the case when the metabo-
lites have a relatively low concentration. And (3) It has the
tendency to inflate the variance of values near zero112

although it can reduce the large variance for large values.
Specifically, using simulation and real data, Feng et

al109,110 showed that the log transformation is often
misused:

� Log transformation usually only can remove or reduce
skewness of the original data that follows a log-normal
distribution or approximately so. Instead, in some cases
it actually makes the distribution more skewed than the
original data.

� It is not generally true that the log transformation can
reduce variability of data especially if the data includes
outliers. In fact, whether the log transformation reduces
such variability depends on the magnitude of the mean
of the observations d the larger the mean the smaller
the variability.

� It is difficult to interpret model estimates from log
transformed data because the results obtained from
standard statistical tests on log-transformed data are
often not relevant to the original, non-transformed
data. To have straightforward biological interpretation,
usually the obtained model estimates from fitting the
transformed data are required to translate back to the
original scale through exponentiation.113 However, since
no inverse function can map back exp (E (log X)) to the
original scale in a meaningful fashion, it was advised
that all interpretations should focus on the transformed
scale once data are log-transformed.110

� Fundamentally statistical hypothesis testing of equality
of (arithmetic) means of two samples is different from
testing equality of (geometric) means of two samples
after log transformation of right-skewed data. These
two hypothesis tests are equivalent if and only if the two
samples have equivalent standard deviations.

� Log transformation with adding the shift parameter not
only cannot help reducing the variability, but also can be
quite problematic to test the equality of means of two
samples using log transformation when there are values
close to 0 in the samples.
Power transformation

Tukey (1957)114 is often credited with introducing a family
of power transformations such that the transformed values
are a monotonic function of the observations over some
admissible range115 which is defined as:

yðlÞ
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for yi > 0. This family was modified by Box and Cox
(1964)116 to take the form of the BoxeCox transformation:
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Power transformation is a parametric transformation
method used to stabilize variance, make the data more
normal distribution-like. We can see the log transformation
embodies a family of power transformations. Mathemati-
cally many other transformations, including square root
transformation (yi Z

ffiffiffiffi
xi

p
), inverse transformation, arcsine

transformation belong to family of power transformations.
The strengths of power transformation lies on the factor

that: (1) It does not have above three problems of log trans-
formation. (2) Furthermore it also has positive effects on
heteroscedasticity.117 (3) For metabolomics data, it was
shown that power transformation outperforms log trans-
formation in terms of reducing the heteroscedasticity and has
the potential to further improve performance95 if a different
power would be used.116 (4) Although the power trans-
formation was not able to completely remove the hetero-
scedasticity of metabolites, it really can reduce the
heteroscedasticity. However, power transformation has the
weakness: it is unable tomakemultiplicative effects additive.

The log transformation was able to remove hetero-
scedasticity only for the metabolites with high concentra-
tions; whereas for low abundant metabolites the log
transformation inflated the heteroscedasticity. Based on
these arguments, we prefer to use power transformation
over log transformation to deal with skewed metabolomics
data. For example, it was shown that the square root
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transformation is robust with the error variance than the
log transformation and is able to handle zero values and has
fewer problems for very small values in the data.95,118

Additionally, we suggest using a distribution-free method,
such as the generalized estimating equations (GEE)110,119 to
model the metabolomics data if metabolites are skewed
rather than trying to find an appropriate transformation.
GEE is tolerant of distribution assumption, providing valid
inference regardless of the distribution of the data.

Variance stabilization normalization (VSN)

VSN is a non-linear transformation approach that reduces
heteroscedasticity. Actually this approach is a hybrid of
sample-wise normalization and a scaling procedure because
it both reduces the sample-to-sample variation and adjusts
the variance of different metabolites.67,77 This approach
was originally developed for the analysis of DNA microarray
data with different solutions,107,108,112,120 which was
reviewed by Kohl et al67. It was then adopted for analysis of
NMR-based metabolomics data.67,77

VSN approach combines normalization with stabilization
of the metabolite variances aiming to keep the variance
constant over the whole data range.77 VSN assumes that a
metabolite variance depends on the mean of that metab-
olite via a quadratic function, while for those values that
approach to the lower limit of detection, their variances
stay constant without decreasing any more, and thus the
coefficient of variation increases.67

VSN uses the transformation of inverse hyperbolic sine to
address this assumption. It approaches the logarithm for
large values to remove heteroscedasticity, while approaches
linear transformation for small intensities to leave the vari-
ance unchanged. For example, the version of the R package
“vsn” is implemented in107 via the following two steps:

Step 1: Corrects or reduces the sample-to-sample vari-
ation by linearly mapping the each sample concentration to
a reference sample (i.e., the first sample in the data set).

Step 2: Adjusts the variance through an inverse hyper-
bolic sine transformation. Because VSN combines variance
stabilization with between-sample normalization,67 this
approach has the strengths: (1) Like PQN,53 VSN is robust
and has a good performance in classification of metab-
olomics data such as reported in the principal component
analysis(PCA),51 as well as reported in terms of the partial
least squares discriminant analysis (PLS-DA) and the area
under the curve values (AUCs).58,67,77,121 (2) The VSN, the
Log Transformation and the PQN were identified as three
best methods that had the best normalization performance,
among those 16 compared methods of normalization,
scaling and transformation (AUCs).58

Conclusion and perspective

Different preprocessing and pretreatment methods are
used to address different issues of the metabolomics data
and they are performed during different stages of data
processing. Each preprocessing and pretreatment method
has its own advantages and disadvantages. The choice for a
suitable preprocessing or pretreatment method is deter-
mined by the biological question to be answered, the
characteristics of the data set and the statistical data
analysis method to be selected.

In this review, we divide the data processing from data
acquisition to statistical analysis into seven steps: (1) Data
acquisition, (2) Data preprocessing, (3) Dealing with missing
values and detecting outliers, (4) Data normalization, (5)
Data centering and scaling, and (6) Data transformation,
and (7) Statistical data analysis.

Although preprocesses for MS-based data and NMR-based
data have slightly different, basically a preprocessing strat-
egy involves five steps: denoising and baseline correction,
peak alignment, peak picking, peak matching, and con-
struction of data matrix. It is common that missing values
occur in processing metabolomics data sets and regardless of
missing values occur from structure, sampling or below the
detection limit of the machine, the zeros pose a big chal-
lenge for downstream statistical analysis. Many methods
have been proposed to deal with the missing values. Related
to dealing with missing values is to detect and handle out-
liers. Several methods have been developed so far.

Normalization is a general class of pretreatment
methods aiming to remove unwanted sample-to-sample
variation. Choosing an appropriate normalization method is
very important topic and has been widely discussed in
metabolomics. Overall probabilistic quotient normalization
and quantile normalization have been evaluated as out-
performed and more appropriate than other normalization
methods for metabolomics data. Centering and scaling is
another general class of pretreatment methods aiming to
adjust the variance of the different metabolites to reduce
heteroscedasticity. Different scaling methods have their
own merits and drawbacks and are suitable for different
data sets. Mean centering aims to convert all the metabo-
lite concentrations to fluctuate around zero. Scaling aims to
convert the data into differences in concentration relative
to the scaling factor. Two scaling approaches are available:
dispersion-based scaling and average-based scaling.

Data transformation is also an important topic in
metabolomics and other research fields. Data trans-
formation is to correct for heteroscedasticity, to convert
multiplicative relations into additive relations, and to make
skewed distributions more symmetric. Although the log
transformation is the most commonly used than power
transformations and variance stabilization normalization
for correcting heteroscedasticity and reducing skewness.
However, its appropriateness lies on log normal assump-
tion, which is not always true in both real and simulation
data. Additionally, log zero is undefined and the log trans-
formation approach is challenging to handle very small
values. Thus, a power transformation such as the square
root transformation and variance stabilization normaliza-
tion (VSN) are recommended. VSN combines normalization
with stabilization, is a non-linear transformation approach
that reduces heteroscedasticity.

Pretreating and normalizing metabolomics data is an
important and challenging topic for statistical analysis of
metabolomics data in biomedical research and especially in
integration of metabolomics data and microbiome data.
The integration of metabolomics data sets and microbiome
data sets with appropriate pretreating and normalizing
methods is still at an early stage compared with individual
pretreating and normalizing methods proposed for each of
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metabolomics and microbiome, and accounting for heter-
oscedasticity between metabolomics and microbiome (and
other omics) data sets represents a critical challenge for
integration multiple omics research.

The integration of metabolomics study to complement
microbiome study may open new possibility for investi-
gating the functional roles of microbiome, although further
research is needed to formally establish an appropriate
paradigm. The research so far points to an associative
relationship between metabolites and microbiome, but
whether this link could be used as predictive pathway or
even as a causative relationship is still unclear. More spe-
cifically, the lack of clarity into which microbial features
and or composition of microbial communities are associ-
ated with which metabolites in individual study need to be
addressed. An outstanding limitation in this field is the lack
of standard or robust procedures to pretreat and normalize
metabolomics and microbiome data respectively and then
integrate them into one data set for statistical analysis and
modeling. Therefore, most findings of the metabolites on
the role to microbiome are limited to identify the metab-
olites that are associated with the changes of microbiome
diversity and composition. Thus most of the existing data
on integration of metabolomics and microbiome studies are
derived from small cross-sectional studies with limited in-
formation on causality. As such, this represents an impor-
tant area for future research because changes and/or
diversity in the microbiota may relate to changes and/or
diversity in metabolites but the microbiome taxonomic di-
versity does not necessarily indicate the association with
the diversity at the functional level. In conclusion, although
numerous unanswered questions remained on a standard
procedure for pretreating and normalizing metabolomics
data and integrating metabolomics data into microbiome
study, the integration of metabolomics and microbiome
brings a new research era for microbiome research.
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